Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions

نویسنده

  • Stan B. Floresco
چکیده

Studies on prefrontal cortex (PFC) dopamine (DA) function have revealed its essential role in mediating a variety of cognitive and executive functions. A general principle that has emerged (primarily from studies on working memory) is that PFC DA, acting on D1 receptors, regulates cognition in accordance to an "inverted-U" shaped function, so that too little or too much activity has detrimental effects on performance. However, contemporary studies have indicated that the receptor mechanisms through which mesocortical DA regulates different aspects of behavioral flexibility can vary considerably across different DA receptors and cognitive operations. This article will review psychopharmacological and neurochemical data comparing and contrasting the cognitive effects of antagonism and stimulation of different DA receptors in the medial PFC. Thus, set-shifting is dependent on a co-operative interaction between PFC D1 and D2 receptors, yet, supranormal stimulation of these receptors does not appear to have detrimental effects on this function. On the other hand, modification of cost/benefit decision biases in situations involving reward uncertainty is regulated in complex and sometimes opposing ways by PFC D1 vs. D2 receptors. When viewed collectively, these findings suggest that the "inverted-U" shaped dose-response curve underlying D1 receptor modulation of working memory is not a one-size-fits-all function. Rather, it appears that mesocortical DA exerts its effects via a family of functions, wherein reduced or excessive DA activity can have a variety of effects across different cognitive domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMT x DRD4 epistasis impacts prefrontal cortex function underlying response control.

The prefrontal cortex plays a major role in cognitive control, but it is unclear how single genes and gene-gene interactions (genetic epistasis) impact neural and behavioral phenotypes. Both dopamine (DA) availability ("inverted U-model") and excitatory versus inhibitory DA receptor stimulation ("dual-state theory") have been linked to important principles of prefrontal processing. Catechol-O-m...

متن کامل

Dopamine, Salience, and Response Set Shifting in Prefrontal Cortex

Dopamine is implicated in multiple functions, including motor execution, action learning for hedonically salient outcomes, maintenance, and switching of behavioral response set. Here, we used a novel within-subject psychopharmacological and combined functional neuroimaging paradigm, investigating the interaction between hedonic salience, dopamine, and response set shifting, distinct from effect...

متن کامل

Operant Procedures for Assessing Behavioral Flexibility in Rats

Executive functions consist of multiple high-level cognitive processes that drive rule generation and behavioral selection. An emergent property of these processes is the ability to adjust behavior in response to changes in one's environment (i.e., behavioral flexibility). These processes are essential to normal human behavior, and may be disrupted in diverse neuropsychiatric conditions, includ...

متن کامل

Prefrontal dopamine levels determine the balance between cognitive stability and flexibility.

A key mechanism by which the prefrontal cortex (PFC) supports goal-oriented behaviors is attentional set formation: the formation and maintenance of an attentional bias toward relevant features. It has previously been proposed that a common single nucleotide polymorphism (val158met) in the gene that codes for the catechol O-methyltransferase (COMT) enzyme may affect an individual's ability to f...

متن کامل

Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex.

Prefrontal cortex (PFC) functions, such as working memory, attention selection, and memory retrieval, depend critically on dopamine and NMDA receptor activation by way of an inverted-U-shaped pharmacological profile. Although single neuron responses in the PFC have shown some aspects of this profile, a network dynamic that follows the dopamine-NMDA dependence has not been identified. We studied...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013